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Abstract

We develop local discontinuous Galerkin (DG) methods for solving nonlinear dispersive partial differential equa-

tions that have compactly supported traveling waves solutions, the so-called ‘‘compactons’’. The schemes we present

extend the previous works of Yan and Shu on approximating solutions for linear dispersive equations and for certain

KdV-type equations. We present two classes of DG methods for approximating solutions of such PDEs. First, we

generate nonlinearly stable numerical schemes with a stability condition that is induced from a conservation law of the

PDE. An alternative approach is based on constructing linearly stable schemes, i.e., schemes that are linearly stable to

small perturbations. The numerical simulations we present verify the desired properties of the methods including their

expected order of accuracy. In particular, we demonstrate the potential advantages of using DG methods over pseudo-

spectral methods in situations where discontinuous fronts and rapid oscillations co-exist in a solution.
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1. Introduction

In this paper, we are concerned with developing numerical approximations of solutions to nonlinear

dispersive equations. The prototype of such equations is the Kðm; nÞ equation, introduced by Rosenau and
Hyman in [16],

ut þ ðumÞx þ ðunÞxxx ¼ 0; m > 0; 1 < n6 3:
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For certain values of m and n, the Kðm; nÞ equation has compactly supported solitary waves solutions.

These structures, the so-called compactons, have several things in common with soliton solutions of the

Korteweg–de Vries (KdV) equation. For example, a single compacton moves with a velocity that is pro-
portional to its amplitude; several compactons moving with different velocities and collide, will go through

a nonlinear interaction from which they emerge with a phase shift; also, general initial data can break into a

train of compactons. To illustrate the theoretical and numerical difficulties in treating compactons consider,

e.g., the fundamental Kð2; 2Þ compacton, which is of the form

uðx; tÞ ¼
4k
3

cos x�kt
4

� �� �2
; jx� ktj6 2p;

0; otherwise:

�
In this case (which should be considered as a caricature of the general framework), the second derivatives

do not exist on the edges of the compacton. Since the PDE involves a third derivative, it is necessary to

interpret the Kð2; 2Þ equation in a suitable weak sense. From such a point of view, there are some simi-

larities between the Kð2; 2Þ equation and, e.g., hyperbolic conservation laws. However, while a weak for-

mulation of conservation laws leads to infinitely many weak solutions and hence one needs to use an

additional condition in the form of an ‘‘entropy solution’’ to single out a unique solution, with the Kð2; 2Þ
equation (as well as with other similar equations), the situation is somewhat simpler. For example, one can

add a constant to the solution, u ! uþ a (which is equivalent to adding a linear dispersion term to the

equation of the form auxxx). This transformation regularizes the solution, and the solution of the original

equation can be obtained in a semi-classical sense by taking the limit a ! 0. For more details we refer to

[12–14]. For the purpose of the present work, we can therefore note that from an analytical point of view,

solutions of compacton equations can be well defined, and from a numerical point of view, one has to be

concerned about approximating solutions that have non-smooth interfaces. It is also important to stress

that compactons do not develop only in the Kðm; nÞ equation. Compacton solutions were shown to exist
for a variety of other nonlinear dispersive equations. For some examples, we refer to [12,13,15] and the

references therein.

In this work we are interested in developing discontinuous Galerkin (DG) methods for approximating

solutions of such nonlinear dispersive equations. First, we would like to comment on other approaches for

approximating solutions for these equations. Most of the works concerning compactons (including [16]),

use pseudo-spectral approximations. Unfortunately, to date, the stability and convergence properties of

spectral methods for approximating solutions of such equations have not been studied. Moreover, with

spectral methods, in order to eliminate the Gibbs oscillations that develop on the non-smooth interfaces of
the solution, one has to use a filter, which might result in the removal of fine scales that can be part of the

solution. A different approach was taken in [10,11], where certain finite-difference methods were explored.

These methods generated instabilities on the interfaces. Recently, Chertock and Levy [2,3] used particle

methods for approximating the solutions of compacton equations. Their method was based on the diffusion

velocity particle method of Degond and Mustieles [9]. One advantage of particle methods over other

methods is that it is relatively easy to preserve the sign of the solution. Hence, there is no need to worry

about situations where the solution might change its sign and move into an ill-posed region of the equation

due to spurious numerical oscillations. This is a relevant issue with some PDEs. This property of particle
methods also plays against them when one is actually interested in solutions that can change their sign

(which is often the case with dispersive equations).

The type of discontinuous Galerkin methods we will discuss in this paper, using a discontinuous

Galerkin finite element approximation in the spatial variables coupled with explicit, nonlinearly stable high

order Runge–Kutta time discretization [19], were first developed for conservation laws containing first

derivatives by Cockburn and Shu [5,6]. For a detailed description of the method as well as its imple-

mentation and applications, we refer the readers to the lecture notes [4] and to the review paper [8].
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For equations containing higher order spatial derivatives, discontinuous Galerkin methods cannot be

directly applied. This is because the solution space, which consists of piecewise polynomials discontinuous

at the element interfaces, is not regular enough to handle higher derivatives. This is a typical ‘‘non-con-
forming’’ case in finite elements. A naive and careless application of the discontinuous Galerkin method

directly to the heat equation containing second derivatives could yield a method which behaves nicely in the

computation but is inconsistent with the original equation suffering from Oð1Þ errors [18,22].
The idea of local discontinuous Galerkin methods for time dependent PDEs with higher derivatives is to

rewrite the equation as a first order system, and only then apply the discontinuous Galerkin method on the

system. A key ingredient for the success of such methods is the careful design of interface numerical fluxes.

These fluxes must be designed to guarantee stability and local solvability of all the auxiliary variables in-

troduced to approximate the derivatives of the solution. The local solvability of all the auxiliary variables is
why the method is called a ‘‘local’’ discontinuous Galerkin method in [7].

The first local discontinuous Galerkin method was developed by Cockburn and Shu [7], for a convection

diffusion equation (containing second derivatives). Their work was motivated by the successful numerical

experiments of Bassi and Rebay [1] for the compressible Navier–Stokes equations. Later, Yan and Shu [20]

developed a local discontinuous Galerkin method for a general KdV type equation containing third de-

rivatives. In both [7] and [20], suitable numerical fluxes at element interfaces were given, which led to

provable nonlinear L2 stability of the methods as well as error estimates for the linear cases. The LDG

method was generalized to PDEs with fourth and fifth spatial derivatives in [21].
The structure of this paper is as follows. In Section 2 we present two formulations of our local DG

method. We start in Section 2.1 with a review of stable DG methods for general KdV equations. Here we

spell out the details of the formulation of DG schemes. We then proceed in Section 2.2 in which we extend

these ideas to the Kðn; nÞ equation. In particular, we prove a nonlinear stability result showing that
R
unþ1 dx

does not increase in time (which in the case of an odd power n is equivalent to saying that the Lnþ1-norm of

the solution does not increase in time). Finally, in Section 2.3 we present an alternative approach for the

construction of the numerical fluxes in which we write a scheme that is stable with respect to small per-

turbations of the solution.
In Section 3 we present a series of numerical simulations in which we verify the expected accuracy of the

scheme and check the stability by monitoring the Lp-norm for a suitable power. We also present several

numerical experiments in which we show collisions between compactons and how compactons emerge from

compact initial data. In particular, we present a couple of examples in which rapid oscillations develop

behind the moving compactons. We demonstrate that unlike pseudo-spectral methods, our DG methods

are capable of capturing simultaneously the oscillations and the non-smooth fronts. Some concluding re-

marks are provided in Section 4.
2. The numerical scheme: formulation and theoretical results

2.1. Generalized KdV equations

In [20], Yan and Shu presented and analyzed a local discontinuous Galerkin method for KdV-type

equations of the form

ut þ f ðuÞx þ ðr0ðuÞgðrðuÞxÞxÞx ¼ 0; ð2:1Þ

augmented with the initial data uðx; t ¼ 0Þ ¼ u0ðxÞ, and periodic boundary conditions. The functions
f ðuÞ; rðuÞ, and gðuÞ are arbitrary (smooth) functions. The KdV equation is a special case of (2.1) (for the

choice f ðuÞ ¼ u2, gðuÞ ¼ u, and rðuÞ ¼ u).
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The form of Eq. (2.1) was chosen due to technical considerations: it turns to be a natural extension of the

KdV equations that still allows one to write a stable DG method. Interestingly, it is not easy to find a model

of interest with a nonlinear dispersive term that fits into the form of (2.1), which is the reason as of why no
such examples were presented in [20].

It turns out that a model proposed in [17] does belong to the family of equations described by (2.1). For

the choice f ðuÞ ¼ u3, rðuÞ ¼ u2 and gðuÞ ¼ u=2, we obtain

ut þ ðu3Þx þ ðuðu2ÞxxÞx ¼ 0: ð2:2Þ

Eq. (2.2) is known to have compacton solutions of the form

uðx; tÞ ¼
ffiffiffiffiffi
2k

p
cos x�kt

2

� �
; jx� ktj6 p;

0; otherwise:

�
To make this presentation self-contained, we start with a brief description of a stable DG method for

(2.1). We denote the mesh by Ij ¼ ½xj�1=2; xjþ1=2�, for j ¼ 1; . . . ;N . The center of the cell is

xj ¼ ðxj�1=2 þ xjþ1=2Þ=2, and Dxj ¼ jIjj. We denote by uþjþ1=2 and u�jþ1=2 the value of u at xjþ1=2, from the right

cell, Ijþ1, and from the left cell, Ij, respectively. We can now define the piecewise-polynomial space VDx as

the space of polynomials of degree k in each cell Ij, i.e.,

VDx ¼ v : v 2 PkðIjÞ for x 2 Ij; j
�

¼ 1; . . . ;N
�
;

Now, consider (2.1) on a periodic domain X and rewrite it as the first-order system

ut þ ðf ðuÞ þ r0ðuÞpÞx ¼ 0;
p � gðqÞx ¼ 0;
q� rðuÞx ¼ 0:

8<: ð2:3Þ

We search for a solution of (2.3) in terms of piecewise polynomial functions, u; p; q 2 VDx, that satisfy

(2.3) in a weak sense. Hence, we multiply (2.3) by test functions v;w; z 2 VDx, and integrate by parts in

every cell Ij to obtainZ
Ij

utvdx�
Z
Ij

ðf ðuÞ þ r0ðuÞpÞvx dxþ f̂
	

þ br0 p̂

jþ1

2

v�jþ1
2
� f̂
	

þ br0 p̂

j�1

2

vþ
j�1

2

¼ 0;Z
Ij

pwdxþ
Z
Ij

gðqÞwx dx� ĝjþ1
2
w�

jþ1
2
þ ĝj�1

2
wþ

j�1
2

¼ 0;Z
Ij

qzdxþ
Z
Ij

rðuÞzx dx� r̂jþ1
2
z�jþ1

2
þ r̂j�1

2
zþ
j�1

2

¼ 0:

ð2:4Þ

The ‘‘hat’’ terms in (2.4) are the boundary terms that emerge from the integration by parts. These are the

so-called ‘‘numerical fluxes’’ that are yet to be determined. The freedom in choosing numerical fluxes can be

utilized for designing a scheme that enjoys certain stability properties. Indeed, it was shown in [20] that it is

possible to prove a cell entropy inequality, an L2-stability result and to obtain error estimates if these

numerical fluxes are chosen as:

br0 ¼ rðuþÞ � rðu�Þ
uþ � u�

; r̂ ¼ rðu�Þ; p̂ ¼ pþ;

f̂ ¼ f̂ ðu�; uþÞ; ĝ ¼ ĝðq�; qþÞ:
ð2:5Þ

We omit the half-integer indices jþ 1=2 as all quantities in (2.5) are computed at the same points (i.e.,

the interfaces between the cells). Here f̂ ðu�; uþÞ and �ĝðq�; qþÞ are monotone fluxes, i.e., Lipschitz con-
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tinuous in both arguments, consistent (i.e., f̂ ðu; uÞ ¼ f ðuÞ), non-decreasing in the first argument, and non-

increasing in the second. With such a choice of fluxes, we have:

Proposition 2.1 (Cell entropy inequality). There exist numerical entropy fluxes Ĥjþ1=2 such that the solution

to the scheme (2.4) and (2.5) satisfies

1

2

d

dt

Z
Ij

u2ðx; tÞdxþ Ĥjþ1
2

	
� Ĥj�1

2



6 0: ð2:6Þ

The proof of Proposition 2.1 can be found in [20]. Next, by summing (2.6) over all j, we have:

Corollary 2.1 (L2 stability). The solution to the scheme (2.4) and (2.5) is L2 stable, i.e.,

1

2

d

dt

Z
X
u2ðx; tÞdx6 0:

Finally, we write the following error estimate, the proof of which can be found in [20].
Proposition 2.2 (Error estimate). The error for the scheme (2.4) and (2.5) applied to the linear PDE

vt þ vx þ vxxx ¼ 0

satisfies

kevkL2 6CDxkþ1=2; ð2:7Þ

where ev is the difference between the smooth solution and its numerical approximation. The constant C de-

pends on the first k þ 3 derivatives of v and the time t.
Remarks.

1. The choice of numerical fluxes in (2.5) is not unique. There is more than one way to choose these fluxes

and obtain the stability results.

2. The numerical simulations hint that the error estimate (2.7) is sub-optimal. An order of k þ 1 is observed

instead of the proved k þ 1=2 both in the L2 and the L1 norms.

3. The proof of cell entropy inequality and L2 stability could be easily extended to the multi-dimensional

case. Numerically, an order of k þ 1 could be obtained for 2-D dispersive equations.
4. The stability results are valid not only for periodic boundary conditions. Stable schemes can be derived

also for other types of boundary conditions.
2.2. The K(n,n) equation – method I

Consider the Kðn; nÞ equation

ut þ ðunÞx þ ðunÞxxx ¼ 0; ð2:8Þ

augmented with initial data uðx; t ¼ 0Þ ¼ u0ðxÞ, and periodic boundary conditions. In this section we write a

local DG method for which we then prove that the integral of the ðnþ 1Þth power of the approximate

solution,
R
unþ1 dx, does not increase in time. Later, we will present another method for approximating the

solution of (2.8) which is based on linearization and compare the results obtained with both methods.
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We start by rewriting (2.8) as a first order system, with three additional variables, v, p, q:

ut þ ðvþ pÞx ¼ 0;
p � qx ¼ 0;
q� vx ¼ 0;
v� un ¼ 0;

8>><>>: ð2:9Þ

and look for u; v; p; q 2 VDx, such that for all test functions s; l;w; z 2 VDxZ
Ij

utsdx�
Z
Ij

ðvþ pÞsx dxþ ð~vjþ1
2
þ p̂jþ1

2
Þs�jþ1

2
� ð~vj�1

2
þ p̂j�1

2
Þsþ

j�1
2

¼ 0;Z
Ij

pldxþ
Z
Ij

qlx dx� q̂jþ1
2
l�jþ1

2
þ q̂j�1

2
lþ
j�1

2

¼ 0;Z
Ij

qwdxþ
Z
Ij

vwx dx� v̂jþ1
2
w�

jþ1
2
þ v̂j�1

2
wþ

j�1
2

¼ 0;Z
Ij

vzdx�
Z
Ij

unzdx ¼ 0:

ð2:10Þ

The numerical flux ~v in the first equation in (2.10) is a convective flux, which we can choose in different

ways such as, e.g., by upwinding. It still remains to determine the other numerical fluxes p̂, q̂, and v̂ in (2.10).

Since there is an explicit relation between p and v (p ¼ vxx), there really is only one degree of freedom in

determining p̂ and v̂. In this case, p̂ and v̂ will have to be from opposite sides to guarantee stability. The

stability analysis below suggests that an appropriate choice of these fluxes can be

p̂jþ1
2
¼ pþ

jþ1
2

; q̂jþ1
2
¼ qþ

jþ1
2

; v̂jþ1
2
¼ v�jþ1

2
; ð2:11Þ

or

p̂jþ1
2
¼ p�jþ1

2
; q̂jþ1

2
¼ qþ

jþ1
2

; v̂jþ1
2
¼ vþ

jþ1
2

: ð2:12Þ
Proposition 2.3. The integralZ
X
unþ1 dx;

where u is the solution of (2.10) and (2.11), does not increase in time.

Proof. We first assume that the power n is odd and choose an upwind convective flux, ~vjþ1=2 ¼ v�jþ1=2. We

comment on even powers in a remark following the proof. Since (2.10) holds for any test functions in VDx,

in particular we can choose s ¼ v, l ¼ q, w ¼ �p, and z ¼ ut. With these test functions and the numerical

fluxes of (2.11), Eq. (2.10) becomesZ
Ij

utvdx�
1

2

Z
Ij

ðv2Þx dx�
Z
Ij

pvx dxþ ðv�jþ1
2
Þ2 � v�j�1

2
vþ
j�1

2

þ pþ
jþ1

2

v�jþ1
2
� pþ

j�1
2

vþ
j�1

2

¼ 0;Z
Ij

pqdxþ 1

2

Z
Ij

ðq2Þx dx� qþ
jþ1

2

q�jþ1
2
þ ðqþ

j�1
2

Þ2 ¼ 0;

�
Z
Ij

qpdx�
Z
Ij

vpx dxþ v�jþ1
2
p�jþ1

2
� v�j�1

2
pþ
j�1

2

¼ 0;Z
I
ðv� unÞut dx ¼ 0:

ð2:13Þ
j
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Adding the first three equations in (2.13) and summing over all j (taking into account the periodic

boundary conditions), yieldZ
X
utvdxþ

1

2

X
j

v�jþ1
2

	�
� vþ

jþ1
2


2
�
þ 1

2

X
j

q�jþ1
2

	�
� qþ

jþ1
2


2
�
¼ 0:

Hence
R
X utvdx6 0, and with the fourth equation in (2.13), we have:

d

dt

Z
X
unþ1 dx6 0: �

Remarks.

1. For an even power n, the same choice of ~v gives a decay of
R
unþ1 dx. However, this may not be a good

choice in terms of upwinding and a truly upwind biased flux, such as the Lax–Friedrichs flux, should be

used.

2. The result of the proposition still holds if the numerical fluxes are chosen as (2.12) instead of (2.11).

3. In case the power n is odd, Proposition 2.3 states that the Lnþ1-norm of the solution does not increase in

time. Hence, in the case where n is odd, Proposition 2.3 provides a stability result. For example, for the

Kð3; 3Þ equation, we end up with a scheme for which the L4-norm of the solution does not increase in
time. This is a more desirable situation as far as the stability of the scheme is concerned when compared,

e.g., with the Kð2; 2Þ equation for which all we get is that
R
u3 dx does not decay in time, and hence, sig-

nificantly less control over the numerical solution.

4. It is straightforward to extend the LDG method to other types of boundary conditions and to obtain

similar stability results as long as the initial-boundary value problem is well-posed. This is one of the

main advantages of finite element methods to which LDG belongs. Examples for different types of

boundary conditions for LDG methods for the KdV equation can be found in [20]. Identical treatment

of the boundary could also be applied to our case.
2.3. The K(n,n) equation – method II

An alternative construction of the numerical flux can be done with linearization arguments. To dem-
onstrate the main idea, we consider the Kðn; nÞ equation

ut þ ðunÞx þ ðunÞxxx ¼ 0; ð2:14Þ

augmented with the initial condition uðx; t ¼ 0Þ ¼ u0ðxÞ, and subject to periodic boundary conditions. In

Section 2.2, we have constructed a scheme for which
R
unþ1 dx, does not increase in time (here, u is the

numerical solution). As already pointed out in a remark to Proposition 2.3, there is a difference between

odd and even powers. Odd n�s conserve an Lp-norm of an even power, which can be understood as a

stability condition on the numerical solution. On the other hand, even n�s, conserve
R
unþ1 dx, with ðnþ 1Þ

odd, in which case we have less control over the numerical solution.

In such cases, we would like to write a scheme that is at least stable with respect to small perturbations of

the solution. We assume that �uðx; tÞ is the exact solution of (2.14), and consider

uðx; tÞ ¼ �uðx; tÞ þ vðx; tÞ; ð2:15Þ

where vðx; tÞ is a small perturbation. Substituting (2.15) in (2.14) and neglecting high-order terms, we have

vt þ nð�un�1vÞx þ nð�un�1vÞxxx ¼ 0: ð2:16Þ
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To further simplify (2.16) we set �u ¼ c, for a constant c, and end up with

vt þ avx þ avxxx ¼ 0; a ¼ ncn�1: ð2:17Þ

The next step is to write a stable numerical scheme for the linear equation (2.17). Here, by stability we

mean that the L2 norm of the numerical solution is non-increasing in time. This will provide us with a

suitable choice of numerical fluxes which we can then generalize to finally obtain a scheme for the nonlinear

equation (2.14). First, we rewrite (2.17) as the first-order system

vt þ avx þ px ¼ 0;
p � aqx ¼ 0;
q� vx ¼ 0;

8<: ð2:18Þ

and seek for v; p; q 2 VDx such that for all test functions s; l;w 2 VDx, the following system is satisfied:Z
Ij

vtsdx�
Z
Ij

ðavþ pÞsx dxþ ða~vjþ1
2
þ p̂jþ1

2
Þs�jþ1

2
� ða~vj�1

2
þ p̂j�1

2
Þsþ

j�1
2

¼ 0;

Z
Ij

pldxþ
Z
Ij

aqlx dx� aq̂jþ1
2
l�jþ1

2
þ aq̂j�1

2
lþ
j�1

2

¼ 0;

Z
Ij

qwdxþ
Z
Ij

vwx dx� v̂jþ1
2
w�

jþ1
2
þ v̂j�1

2
wþ

j�1
2

¼ 0:

ð2:19Þ

We need to specify ~v; p̂; q̂ and v̂ (such that kvðtÞk2 is non-increasing). Here, ~v is the convective flux, which
can be chosen, e.g., as Lax–Friedrichs. The choice of the other numerical fluxes that will guarantee stability

does depend on the sign of a. In case n is odd, a is always non-negative. However, if n is even, a can change

its sign. For odd n we can either choose p̂ ¼ pþ; q̂ ¼ qþ; v̂ ¼ v�, or p̂ ¼ p�; q̂ ¼ qþ; v̂ ¼ vþ. For even n, it
is easy to see that a (linearly) stable choice is:

p̂ ¼ p�;

q̂ ¼
qþ if aP 0;

q� if a < 0;

�
v̂ ¼ vþ:

ð2:20Þ

Now, given a scheme that is stable for the linear equation, the second step is to generalize it to the

(nonlinear) Kðn; nÞ equation. Hence, we rewrite Kðn; nÞ as a first-order system:

ut þ ðun þ pÞx ¼ 0;
p � qx ¼ 0;
q� ðunÞx ¼ 0:

8<: ð2:21Þ

For odd n, the numerical fluxes are given as:

p̂jþ1
2
¼ pþ

jþ1
2

;

q̂jþ1
2
¼ qþ

jþ1
2

;

bun jþ1
2
¼ ðu�jþ1

2
Þn

(or p̂ ¼ p�; q̂ ¼ qþ; bun ¼ ðuþÞn). For even n, the generalization of the linearly stable numerical fluxes

reads:
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p̂jþ1
2
¼ p�jþ1

2
;

q̂jþ1
2
¼

qþ
jþ1

2

if ðuþ
jþ1

2

Þn�1 þ ðu�
jþ1

2

Þn�1 P 0;

q�
jþ1

2

; otherwise;

8<:
bun jþ1

2
¼ ðuþ

jþ1
2

Þn:
3. Numerical examples

The ODE solver we use in the following examples is the explicit, nonlinearly stable, third-order Runge–
Kutta method of Shu and Osher [19]. Other ODE solvers can be used. In all examples, the figures present

the solution obtained with a particular choice of grid. We have verified with the aid of successive mesh

refinements, that in all cases, the approximations are numerically convergent.

3.1. A generalized KdV equation

In our first example, we approximate solutions of Eq. (2.2), ut þ ðu3Þx þ ðuðu2ÞxxÞx ¼ 0. First, in Table 1

we monitor the evolution of the L2-norm of the solution for a single compacton initial data. Here, we use P 1

polynomials with 260 and 520 cells. As expected, the L2-norm only decreases in time. Also, the finer the grid

is, the slower is the rate of decay of the L2-norm. In Table 2 we show an accuracy test for a single com-

pacton initial data:

uðx; 0Þ ¼ 2 cosðx=2Þ; x 2 ½�p; p�;
0; otherwise:

�
ð3:22Þ

The accuracy is measured away from the interface in the interval ½0; p� at T ¼ p=4.
Table 1

The L2-norm at different times for Eq. (2.2) and a single compacton initial data (3.22)

L2 norm T ¼ 0 T ¼ 1 T ¼ 2 T ¼ 3 T ¼ 4 T ¼ 5 T ¼ 6 T ¼ 8

n ¼ 260 0.8779 0.8734 0.8702 0.8671 0.8640 0.8611 0.8582 0.8524

n ¼ 520 0.8773 0.8744 0.8731 0.8725 0.8718 0.8712 0.8706 0.8695

The solution is obtained with the L2-stable scheme of Section 2.1 and P 1 polynomials.

Table 2

An accuracy test for Eq. (2.2) with a one-compacton initial data (3.22)

k N ¼ 48 N ¼ 80 N ¼ 112 N ¼ 144

Error Error Order Error Order Error Order

0 L2 1.97 e) 01 1.45 e) 01 0.60 1.16 e) 01 0.68 9.62 e) 02 0.73

L1 4.83 e) 01 3.54 e) 01 0.61 2.81 e) 01 0.68 2.34 e) 01 0.73

1 L2 1.35 e) 03 5.46 e) 04 1.77 2.76 e) 04 2.01 1.79 e) 04 1.71

L1 7.96 e) 03 2.99 e) 03 1.92 1.70 e) 03 1.66 1.07 e) 03 1.84

The computational domain is ½�3p=2; 5p=2�. The accuracy is computed for the compacton in smooth areas, at time T ¼ p=4.
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We proceed by showing a collision between two compactons in Fig. 1. The initial data are taken as

uðx; 0Þ ¼
4 cosððxþ pÞ=2Þ; x 2 ½�2p; 0�;
2 cosððx� 2pÞ=2Þ; x 2 ½p; 3p�;
0; otherwise:

8<: ð3:23Þ

The computational domain is taken as ½�4p; 22p� with P 1 polynomials and 260 cells. The solution is

shown at times T ¼ 1; 2; 4; 6. As can be seen in the figure, there is some residue in this collision that seems to

be of the form of a compacton–anti-compacton pair similar to the one reported for the Kð2; 2Þ equation in

[16]. In the next example we experiment with a collision between three compactons. The results are shown

in Fig. 2. This time the initial data are taken as
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Fig. 1. An interaction between two compactons for Eq. (2.2). The initial data are given by (3.23). The solution is obtained with the L2-

stable scheme of Section 2.1. The polynomials are P 1 with 260 cells.
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Fig. 2. An interaction between three compactons for equation (2.2). The initial data are given by (3.24). The solution is obtained with

the L2-stable scheme of Section 2.1. The polynomials are P 1 with 260 cells.
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uðx; 0Þ ¼

4 cosððxþ pÞ=2Þ; x 2 ½�2p; 0�;
3 cosððx� 2pÞ=2Þ; x 2 ½p; 3p�;
2 cosððx� 5pÞ=2Þ; x 2 ½4p; 6p�;
0; otherwise:

8>>><>>>: ð3:24Þ

Similarly to the previous example, the computational domain is taken as ½�4p; 22p� with P 1 polynomials

and 260 cells. The solution is shown at times T ¼ 0; 2; 4; 6. In this case there is also a residue in this collision,

this time of an unknown structure.
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3.2. The L4-stable scheme for K(3,3)

In the following series of examples we present results obtained with the method described in
Section 2.2. We start with checking the accuracy of the method by approximating the solution of the Kð3; 3Þ
equation

ut þ ðu3Þx þ ðu3Þxxx ¼ 0; ð3:25Þ

with a single compacton initial data of the form

u0ðxÞ ¼
ffiffi
3
2

q
cos x

3

� �
; x 2 ½�1:5p; 1:5p�;

0; otherwise:

(
ð3:26Þ

The results are shown in Table 3. The accuracy is measured away from the interface in the interval ½0; 2p�
at T ¼ p. The degree of the polynomials is taken as k ¼ 0; 1, and the results confirm the expected k þ 1
order of accuracy of the scheme.

We proceed by exploring the interaction between two compactons. Here, the initial data are taken as

u0ðxÞ ¼

ffiffiffi
3

p
cosðxÞ; x 2 ½�1:5p; 1:5p�;ffiffiffiffiffiffiffiffi
3=2

p
cosðx� 3:5pÞ; x 2 ½2p; 5p�;

0; otherwise:

8<: ð3:27Þ

The results are shown in Fig. 3. In particular, the solution is plotted during the nonlinear interaction at

time T ¼ 6, and after the compactons pass through each other at time T ¼ 20. The polynomials are P 1 with

200 cells. As can be seen in the figure, the interaction leaves a small residue on the left side, so that the
collision is not fully elastic. The compactons, however, do seem to emerge out of the interaction intact.

Again, the residue of the interaction looks like a compacton–anti-compacton pair.

Next, we solve (3.25) subject to the initial data

u0ðxÞ ¼
ffiffiffi
3

2

r
cos

x
6

	 

; x 2 ½�3p; 3p�; ð3:28Þ

and zero elsewhere. The results of our simulations are shown in Fig. 4. As time evolves, a train of canonical

compactons splits from the initial data and moves to the right. At the same time, a rapid oscillation de-

velops at the left interface of the initial data. This example clearly demonstrates the advantages of the

discontinuous Galerkin method over a pseudo-spectral method. In pseudo-spectral methods, one needs to
Table 3

An accuracy test for a one-compacton solution of the Kð3; 3Þ equation (3.25) with a single compacton initial data (3.26)

k N ¼ 40 N ¼ 80 N ¼ 160 N ¼ 320

Error Error Order Error Order Error Order

0 L2 1.48 e) 01 9.22 e) 02 0.68 5.28 e) 02 0.80 2.84 e) 02 0.89

L1 2.17 e) 01 1.35 e) 01 0.69 7.65 e) 02 0.82 4.10 e) 02 0.90

1 L2 1.70 e) 03 3.92 e) 04 2.11 1.08 e) 04 1.85 2.65 e) 05 2.03

L1 5.94 e) 03 1.70 e) 03 1.81 4.17 e) 04 2.02 1.01 e) 04 2.05

The solution is obtained with the L4-stable scheme of Section 2.2. The computational domain is ½�2p; 3p�. The accuracy is

computed for the compacton in smooth areas. A ðk þ 1Þ order of accuracy is observed.
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Fig. 3. An interaction between two compactons for the Kð3; 3Þ equation (3.25). The initial data are given by (3.27). The solution is

obtained with the L4-stable scheme of Section 2.2. The polynomials are P 1 with 200 cells.
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utilize a filter in order to remove the Gibbs oscillations that develop in the non-smooth interface (i.e., the

edges of the compactons). In the Fourier space, a filter amounts to generating a (preferably) smooth decay

in the high-modes. Unfortunately, such a filter can not distinguish between numerical oscillations that

develop due to the non-smooth boundary, and physical oscillations, like the one that seems to develop in
the present example on the left interface. We do not know what is the source of these oscillations, and to

our knowledge, this is the first time that such oscillations are observed. Nevertheless, we consider this to be

a fundamental example that shows how one method can capture simultaneously sharp interfaces and rapid

oscillations without any special adaptation.
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Fig. 4. The Kð3; 3Þ equation (3.25). Compactons splitting from the initial data (3.28). Singular oscillations develop at the left interface.

The solution is obtained with the L4-stable scheme of Section 2.2. The polynomials are P 1 with 400 cells.
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In Fig. 5 we compare the results of our DG method with those obtained with a pseudo-spectral method

which is widely used in compacton computations. In order to be able to deal with the non-smooth interfaces

with a pseudo-spectral method, we use a smooth low-pass filter in the Fourier space. While almost com-
pletely eliminating the Gibbs phenomenon away from the discontinuity, the filter does cause a noticeable

damping in the oscillations at the left interface. A zoom on the oscillatory region is shown in Fig. 5(b). Even

1024 modes in a pseudo-spectral solution do not resolve the oscillations the way the DG method does with

only 400 cells. Mesh refinements of the DG solution as well as an approximation that is obtained with P2
polynomials are shown in Fig. 6. We believe that the similar oscillations that we get on the left side of the

solution with two independent methods are a strong indication that the oscillations are an integral part of
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spectral method (including a smooth high-pass filter) with N ¼ 256; 512; 1024 modes. The DG method is the L4-stable scheme of
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the solution and not a numerical artifact. In Table 4 we monitor the L4-norm of the computed solution at

different times with different grid resolutions for the initial data (3.28). Clearly, there is a very slow decay of

the L4 norm in time, which confirms the stability properties of our scheme even when the solution is very

oscillatory.
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Fig. 6. The Kð3; 3Þ equation (3.25). Compactons splitting from the initial data (3.28) at T ¼ 8. A solution obtained with the L4-stable

DG scheme of Section 2.2 with (a) N ¼ 200; 400; 600 with P 1 polynomials. (b) N ¼ 400 with P 1 and P 2 polynomials.

Table 4

The L4-norm for the Kð3; 3Þ equation (3.25) with the initial data (3.28)

n T ¼ 0 T ¼ 2 T ¼ 4 T ¼ 6 T ¼ 8

300 0.70934 0.70933 0.70929 0.70923 0.70917

600 0.70932 0.70932 0.70931 0.70930 0.70930

The solution is obtained with the L4-stable scheme of Section 2.2. The polynomials are P 1, with 300 and 600 points.
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A somewhat similar phenomenon is observed when solving (3.25) subject to the initial data

u0ðxÞ ¼
2 cosðx=5Þ; x 2 ½�2:5p; 2:5p�;
0; otherwise:

�
ð3:29Þ

The results are shown in Fig. 7. Here, we see compactons that split from the initial data and move to the

right. At the same time, an oscillatory behavior develops at the left interface.
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Fig. 7. The Kð3; 3Þ equation (3.25). Compactons splitting from the initial data (3.29). Oscillations develop at the left interface. The

solution is obtained with the L4-stable scheme of Section 2.2. The polynomials are P 1 with 200 cells.
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3.3. The linearly stable scheme for K(2,2) and K(3,3)

In the following examples, we want to check the performance of the linearly stable schemes we developed
in Section 2.3.

1. The Kð2; 2Þ equation. The canonical traveling wave solution for the Kð2; 2Þ equation,

ut þ ðu2Þx þ ðu2Þxxx ¼ 0; ð3:30Þ

is given by the compacton

uðx; tÞ ¼ 4k
3

cos2
x� kt
4

 �
; jx� ktj6 2p: ð3:31Þ

In our first example, we solve (3.30) subject to a one-compacton initial condition (given by (3.31)

with k ¼ 1). The results of the accuracy test with this initial data are shown in Table 5. The accuracy

is measured away from the interface in the interval ½0; 2p�. The accuracy is computed at T ¼ p=2 with

P 0, P 1 and P 2 polynomials. The results shown in this table confirm the expected k þ 1 order of ac-

curacy.

A collision between two compactons is shown in Fig. 8. Similarly to the original compactons paper

[16], after the collision we observe the emergence of a compacton–anti-compacton pair. Finally, com-

pactons splitting from a more general initial data are shown in Fig. 9. Here, the initial data are taken
as

u0ðxÞ ¼
4

3
cos2

x
8

	 

; x 2 ½�4p; 4p�; ð3:32Þ

and zero elsewhere.

2. The Kð3; 3Þ equation. We would like to compare the L4-stable scheme of Section 2.2 with the linearly

stable scheme of Section 2.3. For that purpose, we repeat two of the previous examples: the interaction

between two compactons with the initial data given by (3.27) and the compactons splitting from the initial

data (3.28) (i.e., the example that develops the singular oscillations). The results of the simulations are
shown in Fig. 10. In the first case with the two colliding compactons, the results obtained with both

methods are nearly identical. With the second case, there is some difference between the solutions in the

oscillatory region. The L4-stable method seems to better resolve the oscillations.
Table 5

Order of accuracy for the Kð2; 2Þ equation (3.30) with a one-compacton initial data (3.31), k ¼ 1, T ¼ p=2

k N ¼ 40 N ¼ 80 N ¼ 120 N ¼ 160

Error Error Order Error Order Error Order

0 L2 7.32 e) 02 4.27 e) 02 0.78 3.01 e) 02 0.86 2.33 e) 02 0.90

L1 2.30 e) 01 1.38 e) 01 0.73 9.84 e) 02 0.84 7.64 e) 02 0.88

1 L2 1.55 e) 03 4.05 e) 04 1.94 1.83 e) 04 1.95 1.04 e) 04 1.97

L1 1.21 e) 02 3.24 e) 03 1.90 1.47 e) 03 1.95 8.34 e) 04 1.96

2 L2 1.14 e) 04 2.11 e) 05 2.43 4.49 e) 06 3.82 1.49 e) 06 3.83

L1 6.04 e) 04 1.34 e) 04 2.19 2.62 e) 05 4.02 1.08 e) 05 3.07

The solution is obtained with the linearly stable scheme of Section 2.3. The computational domain is ½�4p; 4p�. The accuracy is

computed in a smooth region away from the interfaces.
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Fig. 8. Two compacton colliding for the Kð2; 2Þ equation (3.30). The solution is obtained with the linearly stable scheme of Section 2.3.

The polynomials are P 1 with 300 cells in ½�4p; 26p�.
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4. Conclusions

In this work we presented several approaches for designing numerical schemes for approximating so-

lutions of certain nonlinear dispersive equations. First, in Section 2.2 we constructed a local DG method
such that a conservation law for the equation was translated into a stability condition for the numerical

scheme. While demonstrating this approach by supplying a suitable numerical flux for several equations of

interest, it is important to note that this approach requires to carefully design the numerical flux that will

suit the problem in hand.
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In our second approach, the one of Section 2.3, we constructed a local DG method that is stable with

respect to small perturbations of the solution. While providing less control over the numerical solution than

the nonlinearly stable scheme of Section 2, the design of such linearly stable DG schemes for different

equations is a relatively straightforward task.
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